老师我有个疑问(急),希望老师能够帮忙回答下,这也是大部分留言中没能解决的疑问。
在莱文斯坦距离讲解时,那里的状态方程是怎么直接写出来的?这一点是我最不能理解的,当然在问该问题之前,我已经尽我所能的尝试理解老师的文章,并且把留言也都翻了一遍。老师请看我下面的陈述:
一:按照老师文章的讲解顺序,先分析了如何用回溯方法,然后绘制了递归树,从递归树中又分析出了具有重复的子结构,接着又画出了状态简图(递归树下面的图,不知道怎么表达),从这幅简图中清晰的看出来状态的转移方式,接下来重点来了!!!文章接着就写出来状态转移方程(不理解的地方)!我在留言中发现,老师对这点的解释是说「状态转移方程与递归树无关,递归树仅仅表达了问题具有重复子结构」,如果按照老师的说法,不根据递归树分析出状态转移过程,那该怎么直接写出状态转移方程(要能够合理的推断出来,而不是靠经验,否则还是无法掌握动态规划)?目前来看,我在文章中没有发现具有这样的逻辑推断。我之前的理解是说,我们其实可以在递归树中分析出状态转移方程如何写,然后这样就形成了一个闭环,由回溯->递归树->状态转移方程。希望在这里老师能够给出一个合理的解释?
二:抛开上面的一些问题,咱们单独看莱问斯坦距离状态转移公式,先假设,按照递归树和递归树下面的图可以知道状态转移的过程(这是一个前提假设)。在留言中的第 4 条「blacknhole」这位同学的留言中,我也有相同的疑问,(i , j, min_edist) 到底表达的是什么状态?(处理完 a[i] b[j] 后的最小距离? or 刚要处理 a[i] b[j] 时对应的最小距离?),
接下来按照二种不同的表达来看看状态方程如何推断出来:
1、 如果表达的含义是 「处理完 a[i] b[j] 后的最小距离」
那么其实从回溯算法中可以知道(因为 i j 的前一个状态已经处理完了,比如 min_edist(i-1,j) 就代表了前一个状态。)
if (a[i] != b[j])
min_edist(i, j) =1+ min( min_edist(i-1, j), min_edist(i, j-1), min_edist(i-1,j-1))
if (a[i] == b[j] )
min_edist(i, j) = min( min_edist(i-1, j), min_edist(i, j-1), min_edist(i-1,j-1))
2、如果表达的含义是「刚要处理 a[i] b[j] 时对应的最小距离」
那么我们可以这么想,当前 i,j min_edist 表示还没有处理过 i,j 时对应的状态,因此我们需要考虑之前的状态是怎么传递到这里来的
min_edist(i, j) =
min(min_edist(i-1,j)+1, min_edist(i, j-1)+1, min_edist(i-1, j-1) + (a[i-1] == b[j-1]? 0 : 1))
从上面的两种推断发现,我觉的都是比较合理的,但是没有一种的结果与老师给的状态转移方程是一致的(这一点比较疑惑)?所以对于老师的状态转移方程肯定不是从递归树中直接推导出来的,那么请问老师这个状态转移方程该怎么合理的推断出来(我觉得这个问题不是靠多做题解决的,必须要知道推理逻辑才能彻底掌握动态规划)?
三:接下来还有一个问题(前提假设是老师的状态方程是正确的,具体逻辑还不能理解)
那么如果根据状态状态方程,来填充状态表的第 0 行 第 0列呢(留言中也有许多这方面的疑问)?按照我的理解,既然状态转移方程我们知道了,那么其实从状态转移方程中就可以直接填充表格了,比如填充第 0 行时,因为从状态转移方程中我们发现有 i - 1,j-1 因此当计算第 0 行时,带有 i-1 项的就可以省略了,因此状态转移方程就剩下 (i, j-1) 项了。然后其实就不用分 a[i] b[j] 是否相等了,但是回头看老师的代码,却不明白为什么还要分 a[i] b[j] 相等不相等。希望老师能够解释一下!
综上:如果老师觉得我描述的问题不清楚,那么希望老师看看这篇文章的其他问题留言,总结一下大家到底哪里不理解,并且对不理解的地方从新更新下当前文章,具体解释一下,比如老师在留言中说过「不能从递归树中直接推导出状态转移方程,两者没有联系」,那么希望老师在文章的对应地方直接表明这句话,并且在加上额外的说明,比如如何推断出状态转移方程,这样整篇文章才能让更多的人从本质上理解动态规划!
最后希望老师能够认真给出我上面几个问题的解答,谢谢老师!
展开
作者回复: 你这个问题太多了 我写篇文章给你 你关注:小争哥