1. 看了下周三的LinUCB文章。这么理解的,COFIBA算法中的M矩阵相当于LinUCB算法中的D矩阵,2个维度都等于内容空间的特征维度数(之前文章中的选择次数m被特征维度数d说取代)。COFIBA算法中的W矩阵相当于LinUCB算法中的西塔θ^。COFIBA算法中的b向量相当于LinUCB算法中的C向量。
2. 通过一类物品的预测来提高探索的效率和稳定度(尤其是数据量大又缺失反馈时)应该是一个实际应用中常见的解决方式。COFIOBA 算法结合了2个比较不错的算法,有更好的理论基础和准确度。
展开