一直对产品的数据分析感兴趣,我来分享一下我最近学到的方法。
1、用户分析
用户画像分析是获取目标用户的主要方法,也是数据分析里很重要的一部分。一般常见的性别、年龄、低于、职业等信息给用户打上一个个的标签,标签越是精准,越是能对精准化营销起到关键性的因素,据说LinkedIn给用户的标签做的十分精准,所以它的广告系统可以做到几十个亿的收入,而国内的一家用户几亿的厂子,广告系统每年的收入只有千万左右的水平。
再比如说京东、淘宝,他们甚至可以预测你接下来要买什么商品,通过短信、push和首页对用户进行精准的推荐。
2、数据埋点
对数据的埋点监控是从产品诞生的第一天就要开始去做,即使数量小,也能对产品迭代、运营活动都起到至关重要的作用。
对于app来说,每个页面和跳转位置都要放置合理的数据埋点,来监测用户行为,DAU、MAU、Interactions、访问深度等等就是我们需要着重观察的数据,app的数据监控更适合从账户体系着手,每个用户就是独立的个体,用户独立的访问行为;
结合精准的用户画像分析就能分析出不同用户的访问行为,得出产品迭代的方向。
3、收入(转化)监控:
每个产品的最终目的都是商业化,对收入的监控,也会对产品迭代起着重要的影响,同一条赛道内,哪个产品最先增强了变现能力,基本就赢得了赛道。
日常监控的数据一般是收入流水、盈利、盈利率(同比、环比)、客单价、用户首次付费、2次付费数、留存率等等。
这类数据保密性都比较高,都会写在后台数据库中,所以数据产品运营人员都要有SQL的基础能力,这样才方便读取数据。(所说到这,希望极客时间快点出SQL的专栏)
手机码字有点累,先这样,我坚信数据会说话,不论是技术、产品或运营,保持数据敏感度十分重要。
展开